Tập mờ
Bài viết này cần thêm chú thích nguồn gốc để kiểm chứng thông tin. |
Các tập mờ hay tập hợp mờ (tiếng Anh: Fuzzy set) là một mở rộng của lý thuyết tập hợp cổ điển và được dùng trong lôgic mờ. Trong lý thuyết tập hợp cổ điển, quan hệ thành viên của các phần tử trong một tập hợp được đánh giá theo kiểu nhị phân theo một điều kiện rõ ràng — một phần tử hoặc thuộc hoặc không thuộc về tập hợp. Ngược lại, lý thuyết tập mờ cho phép đánh giá từ từ về quan hệ thành viên giữa một phần tử và một tập hợp; quan hệ này được mô tả bằng một hàm liên thuộc (membership function) . Các tập mờ được coi là một mở rộng của lý thuyết tập hợp cổ điển là vì, với một universe nhất định, một hàm liên thuộc có thể giữ vai trò của một hàm đặc trưng (indicator function) ánh xạ mỗi phần tử tới một giá trị 0 hoặc 1 như trong khái niệm cổ điển.
Định nghĩa
sửaMột tập mờ A trên một không gian nền được định nghĩa như sau:
Hàm thuộc lượng hóa mức độ mà các phần tử thuộc về tập cơ sở . Nếu hàm cho kết quả 0 đối với một phần tử thì phần tử đó không có trong tập đã cho, kết quả 1 mô tả một thành viên toàn phần của tập hợp. Các giá trị trong khoảng mở từ 0 đến 1 đặc trưng cho các thành viên mờ.
Hàm liên thuộc thỏa mãn các điều kiện sau
Ứng dụng
sửaTập mờ B, liệt kê theo ký hiệu mờ chuẩn là B = {0.3/3, 0.7/4, 1/5, 0.4/6}, có nghĩa rằng giá trị của hàm liên thuộc cho phần tử 3 là 0,3, cho phần tử 4 là 0,7, v.v... Lưu ý rằng các giá trị với độ liên thuộc bằng 0 không được liệt kê trong biểu diễn tập hợp. Ký hiệu chuẩn cho độ liên thuộc của phần tử 6 trong tập B là μB(6) = 0,4.
Lôgic mờ
sửaLà một mở rộng của lôgic đa trị (multi-valued logic), các hàm ( ) ánh xạ các biến mệnh đề ( ) vào một tập các độ liên thuộc ( ) có thể được xem là các hàm liên thuộc ánh xạ các mệnh đề lôgic bậc một vào các tập mờ (hay nói một cách chính thức hơn, ánh xạ vào một tập có thứ tự bao gồm các cặp mờ, gọi là quan hệ mờ). Với cách tính giá trị này, lôgic đa trị có thể được mở rộng để tính đến các tiền đề mờ mà từ đó có thể rút ra các kết luận được đánh giá.
Mở rộng này đôi khi được gọi là "lôgic mờ nghĩa hẹp" (fuzzy logic in the narrow sense) để đối với "lôgic mờ nghĩa rộng" (fuzzy logic in the wider sense) xuất phát từ các lĩnh vực kỹ thuật về điều khiển tự động và kỹ nghệ tri thức, và là loại lôgic bao hàm nhiều chủ đề có liên quan đến tập mờ và lập luận xấp xỉ (approximated reasoning).
Các ứng dụng công nghiệp của tập mờ trong ngữ cảnh của "lôgic mờ nghĩa rộng" được nói đến trong bài lôgic mờ.
Số mờ
sửa- Xem bài chính Số mờ.
Một số mờ là một tập mờ lồi được chuẩn hóa hàm liên thuộc của hàm này có tính chất liên tục ít nhất tại từng đoạn, và hàm có giá trị tại đúng một phần tử.
Khoảng mờ
sửaKhoảng mờ (fuzzy interval) là một tập không chắc chắn với một khoảng trung bình (mean interval) mà các phần tử của nó có giá trị hàm liên thuộc . Cũng như đối với các số mờ, hàm liên thuộc phải có tính chất lồi, chuẩn hóa, và có tính liên tục ít nhất trên từng đoạn.
Xem thêm
sửa- Lý thuyết độ đo mờ (Fuzzy measure theory)
- Lý thuyết tập hợp thay thế (Alternative set theory)
- Defuzzification
- Lôgic mờ
- Các phép toán trên tập mờ
- Neuro-fuzzy
- Rough set
- Uncertainty
- Rough fuzzy hybridization
- Fuzzy subalgebra
- Bài toán bờ
Liên kết ngoài
sửaTiếng Anh:
- Uncertainty model Fuzziness Lưu trữ 2006-04-12 tại Wayback Machine
- The Algorithm of Fuzzy Analysis Lưu trữ 2006-05-31 tại Wayback Machine
- Fuzzy Image Processing Lưu trữ 2006-06-22 tại Wayback Machine
Tham khảo
sửa- Gottwald, Siegfried, A Treatise on Many-Valued Logics. Research Studies Press LTD. (2001) Baldock, Hertfordshire, England.
- Zadeh, L. A., Fuzzy sets. Information and Control, Vol. 8, pp. 338–353. (1965).
- Zadeh, L. A., The concept of a linguistic variable and its application to approximate reasoning. Information Sciences, Vol. 8, pp. 199–249, 301–357; Vol. 9, pp. 43–80. (1975).
- Zadeh, L. A., Fuzzy Sets as a Basis for a Theory of Possibility, Fuzzy Sets and Systems, Vol. 1, No. 1, pp. 3–28 (1978).