Cho , là các không gian vectơ, trong đó hữu hạn chiều. Cho là một biến đổi tuyến tính. Ta có
,
trong đó Rank là hạng của phép biến đổi, còn Nullity là số vô hiệu tức là số chiều của hạt nhân của phép biến đổi.
và
Dựa vào bổ đề tách, ta có thể phát biểu định lý này dưới dạng một mệnh đề về sự đẳng cấu giữa các không gian, chứ không chỉ riêng về số chiều của chúng. Một cách rõ ràng, vì ánh xạ T tạo ra một đẳng cấu từ không gian thương vào không gian nên từ sự tồn tại một cơ sở của V có thể suy ra từ bổ đề tách rằng . Chuyển sang số chiều, ta có định lý về hạng.
Vì [5] nên ta nghĩ ngay đến ma trận khi nói về ánh xạ tuyến tính. Với trường hợp một ma trận , số chiều của miền xác định là , cũng là số cột của ma trận. Vì thế đẳng thức của định lý về hạng đối với một ma trận cho trước trở thành
Ở đây trình bày hai chứng minh. Chứng minh đầu tiên[2] là đối với trường hợp tổng quát, sử dụng ánh xạ tuyến tính. Chứng minh thứ hai[6] xét hệ tuyến tính đồng nhất trong đó ma trận có hạng và chứng tỏ tồn tại một tập hợp gồm đúng các nghiệm độc lập tuyến tính và span hạt nhân của .
Trong khi định lý yêu cầu miền xác định của ánh xạ tuyến tính phải là hữu hạn chiều, đối với miền giá trị lại không có yêu cầu như vậy. Điều này có nghĩa là có những ánh xạ tuyến tính thỏa mãn định lý nhưng không được cho bởi các ma trận. Tuy nhiên, chứng minh thứ nhất thực ra không tổng quát hơn chứng minh thứ hai: bởi vì ảnh của ánh xạ tuyến tính là hữu hạn chiều, chúng ta có thể biểu diễn được ánh xạ đó từ miền xác định vào ảnh bằng một ma trận, sau đó chứng minh định lý đối với ma trận đó, cuối cùng đưa ảnh vào tập đích đầy đủ.
Cho là các không gian vectơ trên một trường và biến đổi được định nghĩa như phát biểu của định lý với .
Vì là một không gian con của nên tồn tại một cơ sở. Giả sử và gọi
là cơ sở của nó. Bây giờ theo bổ đề trao đổi Steinitz ta có thể mở rộng cơ sở bằng cách bổ sung thêm vào vectơ độc lập tuyến tính để có một cơ sở đầy đủ của . Đặt
sao cho
là một cơ sở của . Từ đây, ta có
.
Ta chứng minh rằng hệ là một cơ sở của . Từ đẳng thức trên ta có là hệ sinh của ; việc còn lại là chứng tỏ hệ vectơ trên là độc lập tuyến tính để kết luận rằng nó là cơ sở.
Giả sử hệ không độc lập tuyến tính, và cho rằng
với các nào đó.
Do đó, nhờ tính tuyến tính của , từ đây suy ra rằng
.
Điều này mâu thuẫn với là một cơ sở, trừ khi tất cả các hệ số đều bằng 0. Ta suy ra hệ phải là độc lập tuyến tính, và hơn nữa hệ này là cơ sở của .
Nói tóm lại, ta có hệ là cơ sở của , và hệ là cơ sở của .
Vì vậy, mỗi cột trong số cột của là các nghiệm của hệ .
Hơn nữa, cột của là độc lập tuyến tính bởi vì suy ra với vectơ gồm các hệ số:
Vì vậy, các vectơ cột của tạo thành một tập hợp gồm nghiệm độc lập tuyến tính của hệ .
Tiếp theo, ta sẽ chứng minh một nghiệm bất kỳ của hệ phải là một tổ hợp tuyến tính của các cột trong .
Để có điều này, cho
là một vectơ bất kỳ sao cho . Lưu ý rằng bởi vì các cột của là độc lập tuyến tính nên dẫn đến .
Vì vậy,
Điều này cho thấy một vectơ là nghiệm của cũng phải là một tổ hợp tuyến tính của các nghiệm đặc biệt cho bởi các cột của . Mà ta đã chứng minh rằng các cột của là độc lập tuyến tính. Vì thế các cột của tạo ra một cơ sở cho không gian hạt nhân của ma trận . Vậy số chiều hạt nhân, hay số vô hiệu của là . Vì bằng hạng của , ta suy ra . Đến đây ta kết thúc chứng minh.
^Banerjee, Sudipto; Roy, Anindya (2014), Linear Algebra and Matrix Analysis for Statistics, Texts in Statistical Science (ấn bản thứ 1), Chapman and Hall/CRC, ISBN978-1420095388